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Abstract. Recently, the use of the algorithmic lateral inhibition (ALI)
method in motion detection has shown to be very effective. The promis-
ing results in terms of the goodness of the silhouettes detected and
tracked along video sequences lead us to accept the challenge of searching
for a real-time implementation of the algorithms. This paper introduces
two steps towards that direction: (a) A simplification of the general ALI
method is performed by formally transforming it into a finite state ma-
chine. (b) A hardware implementation of such a designed ALI module, as
well as an 8x8 ALI module, has been tested on several video sequences,
providing promising performance results.

1 Introduction

In recent years, many researchers have explored the relation between discrete-
time recurrent neural networks and finite state machines, either by showing
their computational equivalence or by training them to perform as finite state
recognizers from example [1]. The relationship between discrete-time recurrent
neural networks and finite state machines has very deep roots [2]. The early
paper mentioned show the equivalence of these neural networks with threshold
linear units, having step-like transfer functions, and some classes of finite state
machines. More recently, some researchers have studied the close relationships
more in detail [3], as well as the combination of connectionist and finite state
models into hybrid techniques [4].

An important issue in the motivation of this paper is that the performance
of neural-based methods can be enhanced by encoding a priori knowledge about
the problem directly into the networks [5]. This knowledge can be encoded into a
recurrent neural network by means of finite state automata rules [6]. The second
idea introduced is that such a finite state machine, implemented in hardware,
may provide real-time performance. The algorithmic lateral inhibition (ALI)
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method is precisely inspired in the (recurrent and non-recurrent) neural com-
putation mechanism known as lateral inhibition. Our experience up to date has
shown that most applications in computer vision, and more concretely in motion
detection through the ALI method (ALI), offer good results [7]. And, currently
our research team is involved in implementing the method into real-time in or-
der to provide efficient response time in visual surveillance applications [8],[9].
This article shows how to implement the ALI method in motion detection by
means of a formal model described as finite state machines, leading to an ALI
module, and its further implementation in a programmable logic device, such as
an FPGA.

2 Formal Model for ALI in Motion Detection

2.1 ALI Temporal Motion Detecting

The aim of this subtask is to detect the temporal and local (pixel to pixel)
contrasts of pairs of consecutive binarised images at gray level k. The step firstly
gets as input data the values of the 256 gray level input pixels I(i, j; t) and
generates N = 8 binary images, xk(i, j; t), corresponding to N levels defined by
“bands”. The output space has a FIFO memory structure with two levels, one
for the current value and another one for the previous instant value. Thus, for
N bands, there are 2N = 16 binary values for each input pixel; at each band
there is the current value xk(i, j; t) and the previous value xk(i, j; t − Δt), such
that:

xk(i, j; t) =
{

1, if I(i, j; t) ∈ [32 · k, 32 · (k + 1) − 1]
0, otherwise (1)

where k = 0, 1, ..., 7, is the band index. Thus, we are in front of a vector quan-
tization (scalar quantization) algorithm generally called multilevel thresholding.
As well as segmentation in two gray level bands is a usual thing, here we are in
front of a refinement to the segmentation in N gray level bands. Thus, multilevel
thresholding is a process that segments a gray-level image into several distinct
regions.

Now, each computation element at this stage, yk(i, j; t), gets a charge value,
complemented by label AC , a binary signat that is also updated, according to
the following formulas:

AC =
{

1, if (xk(i, j; t) = 1) ∩ (xk(i, j; t − Δt) = 0)
0, otherwise (2)

yk(i, j; t) =

⎧⎪⎪⎨
⎪⎪⎩

vdis, otherwise
vsat, if (xk(i, j; t) = 1) ∩ (xk(i, j; t − Δt) = 0)
max[xk(i, j; t − Δt) − vdm, vdis],

if (xk(i, j; t) = 1) ∩ (xk(i, j; t − Δt) = 1)

(3)
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2.2 ALI Spatial-Temporal Recharging

In the previous step ALI Temporal Motion Detecting we have obtained the
individual “opinion” of each computation element. But, our aim is also to con-
sider the “opinions” of the neighbors. The reason is that an element individually
should stop paying attention to motion detected in the past, but before making
that decision there has to be a communication in form of lateral inhibition with
its neighbors to see if any of them is in state S7 (vsat, maximum charge). Oth-
erwise, it will be discharging down to S0 (vdis, minimum charge), because that
pixel is not bound to a pixel that has detected motion. In other words, the aim
of this step is to focus on those pixels charged with an intermediate accumulated
charge value, yk(i, j; t), but directly or indirectly connected to saturated pixels
(vsat) in state S7 by incrementing their charge. These “motion values” of the
previous layer constitute the input space, whereas the output is formed after
dialogue processing with neighboring pixels by the so called permanency value,
zk(i, j; t).

The values of charge accumulated before dialogue are written in the central
part of the output space of each pixel (C∗) that now enters in the dialogue
phase according to recurrent ALI. The data in the periphery of receptive field
in the output space of each pixel (P ∗) contains now the individual calculi of
the neighbors. Let vC(t) = yk(i, j; t) be the initial charge value at this step.
Each pixel takes into account the set of individual calculus, vC(t + k · Δτ), Aj ,
according to:

AP ∗(τ) =
⋃
j

Aj(τ) (4)

This result, AP ∗ , is now compared with AC , giving rise to one of two discrep-
ancy classes (recharge or stand-by).

D(t + l · Δτ) =

⎧⎨
⎩

stand − by(vdis), if vC(t + l · Δτ) = vdis

stand − by(vsat), if vC(t + l · Δτ) = vsat

recharge, if (vdis < vC(t + l · Δτ) < vsat) ∩ (AP ∗ = 1)
(5)

Subsequently, the class activated outputs the new consensus charge value after
dialogue, zk(i, j; t + Δt), with Δt = k · Δτ , being k the number of iterations in
the dialogue phase, a function of the size of the receptive field. Notice that τ is
a parameter that only depends on the size of the objects we want to detect from
their motion. So, the purpose of this inference is to fix a minimum object size in
each gray level band. The whole dialogue process is executed with clock τ , during
k intervals Δτ . It starts when clock t detects the configuration yk(i, j; t − Δt) =
yk(i, j; t) = 1 and ends at the end of t, when a new image appears.

AC =
{

1, if D(t + l · Δτ) = {stand − by(vsat) ∪ recharge}
0, otherwise (6)
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v(t + l · Δτ) =

⎧⎪⎪⎨
⎪⎪⎩

vdis, if D(t + l · Δτ) = stand − by(vdis)
vsat, if D(t + l · Δτ) = stand − by(vsat)
min[v(t + (l − 1) · Δτ) + vrv, vsat],

if (D(t + l · Δτ) = recharge

(7)

AC = 0, if D(t + (l − 1) · Δτ) = {stand − by(vsat) ∪ recharge} (8)

In each dialogue phase (in other words, in each interval of clock Δτ), the
calculation element only takes into account values yk(i, j; t − Δt), yk(i, j; t) and
AC(t) present in that moment in its receptive field. To diffuse or to use more
distant information, new dialogue phases are necessary. That is to say, new
inhibitions in l · Δτ (1 < l ≤ k) are required. This only affects to state variable
AC(τ), as yk(i, j; t−Δt) and yk(i, j; t) values remain constant during the intervals
used to diffuse τ and to consensus the different partial results obtained by the
calculation elements.

Notice that the recharge may only be performed once during the whole di-
alogue phase. That is why AC = 0, when a recharge takes place. Lastly, the
output will be:

zk(i, j; t + Δt) = vC(t + Δt) (9)

Charge values, zk(i, j; t + Δt), offered by the previous step are now evaluated
in the center and in the periphery. Now, let vC be the initial charge value at this
subtask. In P ∗ we have the average of those neighbors that have charge values
different from θmin, the so called “permanency threshold value”.

vC = max[vC , θmin] (10)

Now the result of the individual value (C) is compared with the mean value in
(P ) and produces a discrepancy class according with threshold, θmin, and passes
the mean charge values that overcome that threshold. After this, the result is
again compared with a second threshold, namely θmax, eliminating noisy pixels
pertaining to non-moving objects.

Ok(i, j; t + Δt) =

⎧⎪⎪⎨
⎪⎪⎩

θmin, if vC = θmin

(vC + vP )/2,
if (θmin < vC < vsat) ∩ (θmin < vP < vsat)
vC , if (θmin < vC < vsat) ∩ (vP = θmin)

(11)

Ok(i, j; t + Δt) = vdis, if Ok(i, j; t + Δt) > θmax (12)

The transitions among the initial state Si(t) (whenever Si(t) different from
S0) and the final state Si(t + Δt) are carried out in agreement with rule:

Sifinal
= 1/Nk+1(Siinitial

+
∑
RFk

vj) (13)
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where the sum on sub-index j extends to all neighbors, vj , belonging to the
subset of the receptive field, RFk, such that its state is different from S0, and
Nk is the number of neighbors with state different from S0.

3 Real-Time Hardware Implementation of
Motion-Detection ALI Modules

In order to accelerate their performance, and hence to obtain real-time processing
rates, many applications use reconfigurable hardware. More concretely, they are
programmedonfield programmable gate arrays (FPGAs) [10]. Some of themost re-
cently used FPGA families are Xilinx Virtex-II [11],[12],[13] and Virtex-E [14],[15].

In this section, we show how a single ALI module, as well as its expansion
to an 8 ∗ 8 module, starting from the formal description as finite state machines
has been implemented (see figure 1). In order to implement the module, the
programming has been performed under Very High Speed Integrated Circuit
Hardware Description Language (VHDL), and by means of the Xilink ISE 8.1
tool, the module has been synthesized and implemented in a Xilink Virtex-4
FPGA. More concretely, the device used is a 4vlx25ff668-10.

RCH HGN_IN

N_OUT

(a)

(b)

(c)

Fig. 1. (a) Layout of a motion-detection ALI module, N IN is the input from the
neighbors sub-module, N OUT is the output towards the neighbors sub-module, RCH
is the recharge sub-module, and HG is the homogenization sub-module. (b) Inside the
N IN module. (c) Inside the N OUT module.

In Table 1, the temporal results associated to the implementation are shown,
and in Table 2, the necessary logic for the implementation is offered. Now, for the
implementation of an 8 ∗ 8 module, using the same FPGA (the 4vlx25ff668-10),
the results obtained are shown in Tables 3 and 4.

The most relevant data is that clock CLK (τ in our formal model) can work at
a frequency of 7.730 MhZ. Nevertheless, real results will be obtained at a higher
time scale (t). When working with 8∗8 modules, the CLK highest frequency has
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Table 1. Temporal results for the ALI module

Minimum period 10.916ns
Maximum frequency 91.609MHz
Maximum combinational path delay 12.357ns
Minimum input required time before clock 6.629ns
Maximum output delay after clock 14.672ns

Table 2. Logic distribution for the ALI module

Number of occupied Slices 43 out of 10,752 (1%)
Number of bonded IOBs 40 out of 448 (8%)
Number of BUFG/BUFGCTRLs 1 out of 32 (3%)
Total equivalent gate count for design 634

to be divided by 8. That is to say, the results for 8∗8 modules will be obtained at
a frequency of 0.966 MHz (1.035 μs). When working with 512∗512 pixel images,
which need 4096 8 ∗ 8 ALI modules, the results are obtained after 4.24 ms. This
result may be considered as excellent, as in order to work in real-time we have
up to 33 ms per image frame.

4 Data and Results

In order to test the validity of our implementation, in this section the result
of applying 8 ∗ 8 ALI modules on specific areas of a well-known benchmark
image sequence is shown. Figure 2 shows the first and last images of the famous
Hamburg Taxi scene, where we have drawn the 128 ∗ 64-pixel zone tested.

(a)             (b) 

Fig. 2. Hamburg Taxi sequence. (a) Frame number 1. (b) Frame number 19.

Figure 3 shows the result on frames 5 and 19 of the sequence. As expected, due
to the region growing technique underlying the ALI method, the silhouette of
the car slightly goes appearing. As you my appreciate, in frame #5 only a little
portion of the moving car’s silhouette appears. This is because no motion has
been detected in a great part of the car respect to the initial frame. Nevertheless,
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Table 3. Temporal results for the ALI 8 ∗ 8 module

Minimum period 129.367ns
Maximum frequency 7.730MHz
Minimum input required time before clock 10.147ns
Maximum output delay after clock 5.829ns

Table 4. Logic distribution for the ALI 8 ∗ 8 module

Number of occupied Slices 3,097 out of 10,752 (28%)
Number of bonded IOBs 131 out of 448 (29%)
Number of BUFG/BUFGCTRLs 2 out of 32 (6%)
Number used as BUFGs 2
Total equivalent gate count for design 47,292

(a)             (b) 

Fig. 3. Results on Hamburg Taxi sequence. (a) Result after frame number 5. (b) Result
after frame number 19.

in frame #19 mostly the complete silhouette of the car may be observed, as at
this frame enough motion exists respect to the initial frame.

5 Conclusions

The design by means of programmable logic enables the systematic and efficient
crossing from the descriptions of the functional specifications of a sequential
system to the equivalent formal description in terms of a Q-states finite state
automata or a N -recurrent-neurons neuronal network, where Q ≤ 2N . Starting
from this point, a hardware implementation by means of programmable logic
is very easy to perform. This kind of design is especially interesting in those
application domains where the response time is crucial (e.g. monitoring and
diagnosing tasks in visual surveillance and security).

In this paper, the results obtained after implementing ALI modules in hardware
on programmable logic, concretely on Virtex-4 FPGA’s, have been shown. These
results start from previous validated researches on moving objects detection, which
unfortunately did not reach real-time performance. Prior to the implementation,
a simplification of the model into an 8-state finite automaton has been performed.
The procedure is easily expandable to all delimited-complexity functions that may
be described in a clear and precise manner by a not too high number of states, which
alternatively are capable of getting the module of the function.
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